

Presentation Outline

- Planning process
- Systems overview
- Restoration prioritization scheme
- Potential restoration projects

Planning Process

Complete field work and remote sensing

Characterize historical and existing conditions

Define limiting factors

Determine restoration goals

Identify and prioritize projects

Project phase

Systems Overview

Lower Calapooia River

- Migration corridor
- Intact riparian zone
- Transient large wood
- Floodplain habitats
- 2 primary eroding banks

Willamette River

- Simplified channel, floodplain fringe
- Narrowed riparian zone
- Off-channel habitats
- River has responded to regulated flows

Periwinkle Creek

- Natural channel and stormwater system
- Urban stream
- Water quality degradation
- Diverse fish community at mouth

Thornton Lake

- Turtle habitat
- Introduced fish
- Seasonal connection
- Residential development
- Stormwater
- Conservation opportunities

Albany Oxbow Lakes

- Long history of use for mills and industrials
- Maintains connection with Willamette
- Tributary streams

Willamette Project Documents

 Willamette River Project Biological Opinion (NMFS 2008)

https://pcts.nmfs.noaa.gov/pls/pcts-pub/pcts_upload.summary_list_biop?p_id=26588

 Willamette River Habitat Protection and Restoration Program 2010-2015 (OWEB 2010)

http://www.nwcouncil.org/fw/projectselection/BiOp/200901200.pdf

Limiting Factors

- Factors that have caused a population decline and limit population recovery
- Willamette Project effects
- Local effects

Willamette Project – Limiting Factors

- Lack of gravel recruitment,
- Altered water temperatures,
- Reduced peak flows/channel complexity and habitat diversity, and
- Altered flows that affect habitat in the tributaries below the dams and in the mainstem Willamette River
- Loss of riparian vegetation and bank armoring

Limiting Factors – WP Effects

Limiting Factors – Local Effects

- Riparian conversion
- Large wood removal
- Direct and indirection river corridor changes

Addressing Limiting Factors

- Restore substrate recruitment
- Restore Willamette habitats where desirable
- Protect the highest quality rearing and migration habitats through conservation measures, acquisition, and/or regulation
- Protect and restore aquatic habitat function at the mouths of tributaries; increase non-structural capacity of floodwater, restore natural riparian communities and their function; increase channel complexity; and increase native floodplain forest.

Lower Calapooia River - Goals

Limiting Factors

- Riparian simplification
- Reduced habitatdiversity fp habitat
- Water temperature & quality
- Tributary connectivity

- Expand riparian
- Connect, enhance floodplain channels
- Tributary fish passage
- Address 2 eroding banks

Willamette River - Goals

Limiting Factors

- Riparian simplification
- Reduced habitat diversity – river & fp habitat
- Water temperature & quality
- Trib connectivity

- Expand riparian
- Connect, enhance floodplain channels
- Educational opportunities

Periwinkle Creek - Goals

Limiting Factors

- Riparian simplification
- Reduced habitat diversity
- Water temperature & quality

- Expand riparian
- Address agriculture and stormwater discharge
- Clear debris
- Educational opportunities

Thornton Lake - Goals

Limiting Factors

- Riparian simplification
- Water temperature & quality
- Connectivity

- Expand riparian
- Address stormwater discharge
- Lakeshore vegetation management
- Fish passage
- Educational opportunities

Albany Oxbow Lakes - Goals

Limiting Factors

- Riparian simplification
- Reduced habitat diversity – fp & tributary habitat
- Water temperature & quality
- Tributary connectivity

- Expand riparian
- Address stormwater discharge
- Enhance oxbow and tributary habitats
- Coordination withCoA efforts TWG
- Potential Cox Creek dam removal

Project Prioritization

- Project Prioritization Parameters
 - Willing landowners and stakeholder interests
 - Projects that address limiting factors and achieve restoration goals
 - Low risk/high reward
 - Mix of active and passive approaches
 - Slow-less expensive vs. Rapid-more expensive

Calapooia Example

			Importance
Limiting Factor	Restoration Goal	General Restoration Action	of Action
Riparian	Expand the riparian corridor	Improve long-term stream shading	M
conversion and		through riparian planting	
simplification		 Preserve remaining riparian 	Н
		corridor through landowner	
		education	
		Conservation easements for	Н
		willing landowners	
		Treat invasive plant species where	M
		feasible	
		Plant armored banks and promote	L
		bioengineering in-place of riprap	
		where stabilization is necessary	
Reduced habitat	Improve habitat diversity	Reconnect floodplain off-channel	Н
diversity	through in-channel and off-	habitats	
	channel enhancement	Install stable log jams for in-	Н
		stream habitat	
		Wetland enhancement	L
Floodplain fish	Provide passage to fish-	Replace failed culverts	Н
passage	bearing tributaries		

			Floodplain/Channel
Restoration Goal	Specific Project	Location (STA)	Location
Expand the riparian	Riparian Enhancement	160+00 - 170+00	RR FP
corridor	Riparian Enhancement	78+00 - 135+00	RL FP
	Riparian Enhancement	135+00 - 157+00	RR FP
	Riparian Enhancement	70+00 - 75+00	RR FP
	Riparian Enhancement	73+00 - 80+00	RR FP
	Riparian Enhancement	32+00 - 50+00	RL FP
	Riparian Enhancement	2+00 - 27+00	RL FP
	Riparian Enhancement	60+00 - 62+00	RL FP
Improve habitat	Engineered Log Jam	108+50	RR
diversity through	Engineered Log Jam	107+00	RR
in-channel and off-	Engineered Log Jam	106+50	RR
channel	Engineered Log Jam	106+00	RR
enhancement	Engineered Log Jam	105+00	RR
	Engineered Log Jam	75+00	RR
	Engineered Log Jam	75+50	RR
	Engineered Log Jam	73+50	RR
	Engineered Log Jam	70+00	RR
	Engineered Log Jam	68+75	RR
	Engineered Log Jam	68+00	RR
	Engineered Log Jam	72+50	RR
	Engineered Log Jam	144+00	RR
	Engineered Log Jam	143+00	RR
	Engineered Log Jam	143+50	RR
	Engineered Log Jam	144+40	RR
	Engineered Log Jam	144+50	RR
	Wetland Enhancement	148+00	RL FP
	Wetland Enhancement	155+00	RL FP
	Wetland Enhancement	120+00	RL FP
	Off Channel Enhancement	144+00	RL
	Off Channel Enhancement	75+00	RR
	Off Channel Enhancement	112+00	RL
	Off Channel Enhancement	70+00	RR
	Bank Stabilization	162+00 - 165+00	RR
	Bank Stabilization	146+00 - 151+00	RR
	Bank Stabilization	82+00 - 96+00	RL
	Bank Stabilization	57+00 - 61+50	RL

- Pursue reveg on lower or historical surfaces closer to river
- 2. Enhance off-channel habitats
- 3. Tributary connectivity
- 4. LWD with reveg bank stabilization

- Pursue reveg on lower or historical surfaces closer to river
- 2. Enhance off-channel habitats and oxbows
- 3. Educational opps

- 1. Educational opps
- 2. Debris removal from park areas
- 3. Consider stormwater management disconnect low flow ag/stormwater system
- 4. Reveg for stream shading

- Conserve undeveloped properties
- 2. Lake front vegetation
- 3. Stormwater management
- 4. Basking logs
- 5. Connectivity

Treatment Map

Thornton Lake, near Albany, Oregon

- Pursue reveg on lower or historical surfaces closer to river
- 2. Enhance off-channel oxbows and lower tribs
- 3. Cox Creek dam removal

Moving Forward...

- CWC work with willing landowners and other stakeholders
- Priority projects developed for funding and implementation
- Project implementation